

SOLIDS TREATMENT AND HANDLING SYSTEMS OVERVIEW

BOARD OF DIRECTORS | NOVEMBER 23, 2024

OUTLINE

01

02

03

04

05

Solids 101

Introduction to how solids are produced, AlexRenew's solids goals, permit requirements, and risks

AlexRenew's Solids Systems

Detailed review of existing solids systems and proposed upgrades as part of the Solids Upgrade Program

Asset Life and Renewal

Discuss the typical life of an asset and review existing solids equipment reliability

New Solids Drying Facility

Overview of proposed solids drying facility

Safety Brief and Site Tour

Tour of WRRF solids treatment and handling systems

TERMS OF THE ART

DEWATERING ≠

DIGESTION ≠

CAKE ≠

THICKENING ≠

SOLIDS ≠

RAGS ≠

ALEXRENEW WRRF TREATMENT PROCESSES

RiverRenew

and the state of t

Tertiary

1-

Nutrient Management Facility BEFRE

N

Secondary and Biological Nutrient Removal

-201-

UV and Post-Aeration

Settentes Dans to

Preliminary and Primary Solids

PPPP

Building L Mechanical thickening, blending, dewatering, and biosolids handling and storage

Building A Digester gas utilization and flares

Building 20 Digestion Complex

Building 55 Pasteurization

Building C Gravity Thickening ⁴

ALEXRENEW LIQUIDS PROCESS DIAGRAM

WHAT ARE WASTEWATER SOLIDS?

Wastewater solids refers to the settled organic and inorganic solids that have been accumulated and separated from the liquid stream during the different phases of wastewater treatment.

SOLIDS SYSTEM GOALS

Separate liquids from solids

Remove as much water content as possible from solids.

Support efficiency of liquids treatment

Keep the biological nutrient removal process in a happy place

Kill pathogens

Allows solids to be beneficially reused.

Destroy organic solids

Stabilizes biosolids, allows beneficial reuse, reduces odor and volume of biosolids, and can produce bioenergy.

Reduce solids volume

Reduces storage, trucking, and disposal costs.

Generate energy

Leverage solids processes to create renewable energy to support other wastewater processes.

Inorganic = 50 mg/L Sand, silt, sediment, etc.

Wastewater solids concentrations

BIOSOLIDS REGULATORY CLASSIFICATIONS

Biosolids regulations are established in the Clean Water Act and administered by the Virginia Department of Environmental Quality (VDEQ) through AlexRenew's VPDES permit. VDEQ also regulates the land application of biosolids through separate permits with contractors like Synagro.

CLASS B

- / Meet basic treatment requirements
- / Contain some detectable levels of pathogens
- / Pathogen and vector attraction reduction
- / < 2 million MPN/g fecal coliform
- / Can only be used on permitted locations

CLASS A

- / Receive additional treatment over Class B
- / Treated to remove pathogens to undetectable levels
- / Comply with the most stringent limits for pollutants
- / < 1,000 MPN/g fecal coliform
- / Can be used as fertilizer or soil conditioner
- / Can be sold to the public

ALEXRENEW SOLIDS ROADMAP

of certain biosolids

ALEXRENEW SOLIDS PROCESS DIAGRAM

GRAVITY THICKENING

- / Reduce water content of solids
- / (3) duty, (2) standby thickening tanks
- / Tanks installed in the 1970s
- / Motors and drives installed in the 1980s
- / Covers installed in 2005
- / Motor control center (electrical) installed in the 1980s
- / Solids Upgrade:
 - New rake drives, piping, scum collection, covers
 - Replace electrical and control systems
 - Decommission Gravity Thickener #1

THICKENING CENTRIFUGES

- / Thicken/concentrate solids by using centrifugal separation – think about a washing machine on spin cycle
- $\checkmark~$ Increase solids concentration from 0.5% to 8%
- / (4) Alfa Laval Sharples XM706 units
- \checkmark (3) duty, (1) standby
- / Installed in 2003
- / Solids Upgrade:
 - Add (1) new thickening centrifuge and replace (4) existing units
 - Replace obsolete drive motors

THICKENED SOLIDS EQUALIZATION TANKS

- Blend thickened solids from centrifuges and gravity thickeners
- Provides buffer between thickening and downstream processes
- / (2) duty, (1) standby
- / Installed in 2003
- / Solids Upgrade:
 - Pilot new mixers to minimize ragging and enhance mixing efficiency
 - Replace all mixers

SECTION VIEW OF TSETS

RSBT Mixers

TSET Mixers

Legend:

- Raw Solids Blending Tank (RSBT)
- Thickened Solids Equalization Tank (TSET)

SOLIDS SCREENING

- Remove trash and debris greater than 5 millimeters from thickened solids to prevent accumulation in downstream equipment and improve aesthetic quality of biosolids
- \checkmark (1) duty, (1) standby
- / Installed in 2005
- / Solids Upgrade:
 - Upgrade to align with new BRB wasting rate

Heat exchangers heat solids to meet Class A standards, (2) duty, (1) standby

Tanks store solids prior to digestion, (3) duty, (1) standby

PASTEURIZATION

- Destroys pathogens in solids to meet Class A requirements
- Heats solids to 160 degrees Fahrenheit and holds for 30 minutes
- Cools solids to temperatures acceptable to support digestion process in existing digesters
- / Installed in 2005
- / Solids Upgrade:
 - Decommission pasteurization system
 - Demolish facilities to provide space to support long-term solids plan

DIGESTION

- / Meet permit requirements for volatile solids reduction
- / Reduce mass of solids for disposal
- / Produce biogas (methane) that can be used for energy
- / Reduce odors in biosolids

20

DIGESTION HEAT EXCHANGERS

- / Provide backup heating of digesters
- Used only if pasteurization system cannot provide heating
- / (4) duty, (0) standby
- / Solids Upgrade:
 - Replace heat exchangers with larger units to provide all digester heating

DIGESTION GAS MIXING

- Methane gas produced by digesters is used for mixing/turning over each digester
- Gas mixing compressors create bubbles for digester mixing, (4) duty, (2) standby
- / (48) bubble mixers perform digester mixing
- / Installed in 2005
- / Solids Upgrade:
 - Decommission gas mixing system and replace with hydraulic jet mixing

VAISPES

DIGESTION ENERGY RECOVERY

- / Digester gas boilers to produce steam for process/facility heat
- \checkmark (2) duty, (0) standby boilers
- / Installed in 2005
- / Enclosed flares destroy excess digester gas, not used by boilers

DEWATERING

- Further reduce the volume of thickened pasteurized digested solids
- / Increase the solids concentration from 3% to 28%, thereby decreasing volume ninefold
- / (3) Alfa Laval Sharples DS706
- / (1) duty, (2) standby
- / Installed in 2003
- / Solids Upgrade:
 - Add new dewatering centrifuge at current rough-in location

SOLIDS HANDLING

- / Transport and store biosolids until removed from facility
- / Consists of conveyors and (6) silos
- \checkmark (1) duty, (1) standby train
- / Installed in 2005
- Available storage in silos is less than one week; no other onsite storage
- / Solids Upgrade:
 - Incorporate transport and storage of cake and pellets between Buildings L and C

Final biosolids product

Biosolids conveyor

Biosolids conveyor and storage silos

SYSTEMS VS ASSETS

The "thing" providing a specific level of service

Example: Car Solids

System

Example: Drivetrain Dewatering Centrifuges

Asset

Example: Transmission Backdrives, Rotating Assembly

TYPICAL LIFECYCLE OF AN ASSET

Asset condition and performance decrease over time. Condition and performance can be restored periodically through corrective and preventative maintenance, but eventually assets must be replaced. Replacement typically occurs when the cost to maintain the asset exceeds the cost to replace it.

ALEXRENEW SOLIDS EQUIPMENT RELIABILITY

AlexRenew leverages its asset management program to extend the useful life of its assets. In the case of AlexRenew's solids system, many of the assets are no longer renewable, due to age, stress, wear, or availability of parts. This decreases system reliability, increases maintenance requirements, and affects the level of service of the entire solids process.

Component	Year Built	Redundant Units	Equipment Supported?	Key notes (rebuilds referenced, since Jan 2023)	Maintenance and Ops Burden
Gravity Thickening					
Motor Control Center	1980s	0	\otimes	Parts no longer available	
Process Mechanical Equipment	1970s-80s	2	\otimes	1 rebuild, drum/rake circa 1970	
Thickening Centrifuges	2003	2	\otimes	5 rebuilds, 100k operating hours	
Solids Mixing	2003	1	\checkmark	Ongoing issues w/ mixer ragging	
Pasteurization					
Solids Pumps	2005	0	\checkmark	5 rebuilds/replacements	
Heat Exchangers	2005	0	\otimes	Parts unavailable for repair	
Gas Mixing Compressors	2005	0	\checkmark	Main bearing wear issues	
Dewatering Centrifuges	2003	1.5	\checkmark	5 rebuilds, 100k operating hours	

ALEXRENEW NEW SOLIDS PROCESS DIAGRAM

26

ALEXRENEW PROPOSED SOLIDS DRYING FACILITY LOCATION

RiverRenew

JE IS

and the second of a

Tertiary

1-

-201-

UV and

Post-Aeration

Settimet Dans to

Secondary and Biological

Nutrient Removal

Nutrient Management Facility BEENNE

N

Building C Proposed Drying Facility Solids

Preliminary and

Primary

Building L Mechanical thickening, blending, dewatering, and biosolids handling and storage

Building A Digester gas utilization and flares

Building 20 Digestion Complex

Building 55 Pasteurization

Building C Gravity Thickening ²⁷

PROPOSED SOLIDS DRYING FACILITY DETAILS

- / Triple pass rotary drum dryer
- / Dual fuel (natural gas, biogas)
- Produces spherical pellets with about 5% water content and about the same size as a crystal of sea salt
- / Virtually no odor
- ✓ Drum dryer is 10-feet tall, a little taller than a typical room

TYPICAL SOLIDS DRYING FACILITY SCHEMATICS

Triple-pass rotary drum dryer

Solids drying facility schematic (courtesy of Andritz)

PROPOSED DRYING FACILITY LAYOUT IN **BUILDING C**

0

-2

-07

6

-1

Ŀ⊚ 1850-309

FORT WORTH, TX SOLIDS DRYING FACILITY

https://www.youtube.com/watch?v=_5VZKQjwV-c

Primary Settling

Gravity Thickening Gravity thickeners and motor control center

Thickening Centrifuges

Pasteurization

Building 20 Digester heating and mixing

L Building Control room Dewatering centrifuges

Future Projects Drying facility

ALEXRENEW SOLIDS TOUR

Preliminary and Primary

1

3

6

2

7

Saffranten Danst te

Solids

4

5

Tertiary

RiverRenew

and the second of

UV and

Post-Aeration

Secondary and Biological

Nutrient Removal

